Effects of stimulus spectral contrast on receptive fields of dorsal cochlear nucleus neurons.
نویسندگان
چکیده
Neurons in the dorsal cochlear nucleus (DCN) exhibit strong nonlinearities in spectral processing. Low-order models that transform the stimulus spectrum into discharge rate using a combination of first- and second-order weighting of the spectrum (quadratic models) usually fail to predict responses to novel stimuli for principal neurons in the DCN, even though they work well in ventral cochlear nucleus. Here we investigate the effects of spectral contrast on the performance of such models. Typically, the models fail for stimuli with natural-sound-like spectral contrasts (~12 dB), but have good prediction performance at small (3-dB) contrasts. The weights also typically increase substantially in amplitude at smaller spectral contrast. These changes in weight size with contrast are partly inherited from similar effects seen in auditory nerve fibers, but there must be additional effects from inhibitory circuits in the DCN. These results provide insight into the reasons for the poor performance of spectrotemporal receptive field (STRF) models in predicting responses of auditory neurons. Because the general shapes of the weights do not change between low and high contrast, they also suggest that STRFs may capture meaningful properties of neural receptive fields, even though they do not do well at predicting responses.
منابع مشابه
A receptive field for dorsal cochlear nucleus neurons at multiple sound levels
Neurons in the dorsal cochlear nucleus (DCN) exhibit nonlinearities in spectral processing, which make it difficult to predict the neurons' responses to stimuli. Here, we consider two possible sources of nonlinearity: non-monotonic responses as sound level increases due to inhibition; and interactions between frequency components. A spectral weighting function model of rate responses is used; t...
متن کاملReceptive field for dorsal cochlear nucleus neurons at multiple sound levels.
Neurons in the dorsal cochlear nucleus (DCN) exhibit nonlinearities in spectral processing, which make it difficult to predict the neurons' responses to stimuli. Here, we consider two possible sources of nonlinearity: nonmonotonic responses as sound level increases due to inhibition and interactions between frequency components. A spectral weighting function model of rate responses is used; the...
متن کاملNonlinear temporal receptive fields of neurons in the dorsal cochlear nucleus.
Studies of the dorsal cochlear nucleus (DCN) have focused on spectral processing because of the complex spectral receptive fields of the DCN. However, temporal fluctuations in natural signals convey important information, including information about moving sound sources or movements of the external ear in animals like cats. Here, we investigate the temporal filtering properties of DCN principal...
متن کاملA spectrotemporal analysis of DCN single unit responses to wideband in guinea pig
Spectrotemporal receptive fields (STRFs) were estimated for chopper and pauser units recorded in guinea pig dorsal cochlear nucleus (DCN). Sixteen wideband, periodic noise stimuli. represented as time-frequency surfaces of energy density. were crosscorrelated in time with the unit’s corresponding period histograms to determine if specific energy patterns tended to precede spike occurrence. The ...
متن کاملDifference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls.
The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure, and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2007